NIH Cloud Platform Interoperability Effort

NHLBI TOPMed: Pediatric Cardiac Genomics Consortium (PCGC)'s Congenital Heart Disease Biobank

Request Access

The Pediatric Cardiovascular Genetics Consortium (PCGC) proposes to define genetic causes for congenital heart defects (CHD) as part of the TOPMed Program are the most common form of heart disease in childhood and are also the most prevalent form of birth defects, occurring in 2-3% of live births. The PCGC has recruited and clinically characterized = 10,000 CHD probands and parents (CHD trios). From whole exome sequencing (WES) of >2800 CHD trios, we identified a substantial enrichment of damaging de novo mutations in genes important for cardiogenesis, particularly implicating histone modifier enzyme gene defects. Analysis of whole genome sequencing (WGS) of 350 probands with CHD unexplained by WES and their parents preliminarily implicated de novo mutations in enhancers of genes previously shown to cause CHD in mouse knock out models. Sequencing of RNA (RNAseq) from discarded cardiac tissues from CHD probands has revealed likely causal allele-specific expression (ASE) as well as biallelic loss of expression (LOE). We have also discovered de novo epimutations, differentially methylated regions (DMRs), some with underlying de novo DNA variation, that are detectable in peripheral blood leukocytes and appear to underlie 10% of CHD. Of note, these assorted 'omic' approaches have enabled one another, both for attributing causality and assessing functional impact. Based on these extensive preliminary data, we hypothesize that PCGC probands with uninformative exomic analyses (WES-negative) harbor de novo genetic and/or epigenetic mutations in critical regulatory elements that participate in developmental expression of cardiac genes. To identify these etiologies, we propose analyses of WGS in 1000 WES-negative CHD trios, prioritizing those with probands with banked CHD tissues (n=78), one damaging variant in a recessive CHD gene, and older fathers (age>45). We also request WGS for 230 probands, for whom we have cardiac tissues but not parental DNAs. We request RNAseq for 308 cardiac tissues. For DNA methylation, which TOPMed will offer through the Illumina 850k array platform, we are requesting analysis of DNAs from peripheral blood leukocytes for all probands for whom WGS will be performed (1000 from trios, 230 singletons) as well as DNAs from cardiac tissues (n=308) to pair with the WGS, RNAseq and blood DNA methylation data. We will use existing resources and capabilities of the PCGC to confirm relevant mutations and those of its companion consortium in the Bench to Bassinet Program, the Cardiovascular Development Consortium, to inform analyses of non-coding mutations as well as to perform confirmatory functional genomics studies using cell and animal models. We expect that the studies resulting from data generated through TOPMed will provide novel insights into the molecular basis for CHD and fundamental knowledge about genes and pathways involved in cardiac development. Aside from being relevant to CHD, we anticipate that our findings will inform the understanding of later-onset cardiovascular diseases, including some arising in adulthood.


Consent Codes


Focus / Diseases

Heart Defects, Congenital

Study Design

Prospective Longitudinal Cohort

Data Types

SNP/CNV Genotypes (NGS), WGS